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Background aims: Platelet-rich plasma (PRP) and bone marrow aspirate are commonly used in orthobiologics
for their anti-inflammatory, anabolic/regenerative and immunomodulatory characteristics via platelet
degranulation and cell secretions. Although platelets are derived from megakaryocytes in the bone marrow,
no attention has been paid to the potential benefits of bone marrow platelets and whether their contents dif-
fer from aging platelets in peripheral blood.
Methods: In the present study, leukocyte-poor peripheral blood-derived platelets in plasma (LPP) and leuko-
cyte-poor bone marrow platelets in plasma (BMP) were prepared from six donors, activated with calcium
chloride, incubated and sampled at day 0, day 3 and day 6. LPP and BMP are platelet preparations intended
to evaluate the respective platelet secretomes but are not classified as conventional PRPs, as they are not con-
centrated to the extent necessary to meet the qualifying criteria. At each time point, 15 growth and immuno-
modulatory factors were quantitated in LPP and BMP: platelet-derived growth factor AA, basic fibroblast
growth factor/fibroblast growth factor 2, granulocyte-macrophage colony-stimulating factor, hepatocyte
growth factor, macrophage colony-stimulating factor, stem cell factor, vascular endothelial growth factor,
tumor necrosis factor alpha, IL-1b, interferon gamma, IL-4, IL-10, IL-1 receptor antagonist protein, IL-12p40
and arginase-1.
Results: The results illustrate that platelets derived from bone marrow have a unique secretome profile com-
pared with those derived from peripheral blood, with significant differences in anti-inflammatory cytokines,
which are associated with monocyte polarization.
Conclusions: Ultimately, bone marrow-derived platelets may be useful as a stand-alone orthobiologic or as an
effective adjuvant to autologous cell therapies where anti-inflammatory and anabolic processes are desired,
especially with respect to monocyte function.
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Introduction

The field of orthobiologics relies heavily on autologous cell thera-
pies (ACTs) derived from peripheral blood (PB) platelets, in the form
of platelet-rich plasma (PRP), bone marrow concentrate (BMC) and
micronized adipose tissue, as methods to resolve pain via mitigating
inflammation [1�3]. In musculoskeletal (MSK) conditions, injuries
associated with either chronic or acute inflammation result in pain
and are often characterized by catabolic processes that must be
addressed prior to resolution of the injury [4]. ACTs are thought to
act as a source of cytokines and chemokines [5�7], collectively
known as the secretome, which are suitable for reducing the produc-
tion of inflammatory proteins created by infiltrating leukocytes, resi-
dent synoviocytes and chondrocytes [8,9]. With regard to PRP,
platelets are used as a reservoir of various bioactive factors that serve
to stimulate the proliferation and differentiation of resident and pro-
genitor cells in diseased tissues [10], a key attribute for its use as a
stand-alone orthobiologic and an adjunct to other ACTs. Although
recent clinical and laboratory studies have highlighted the benefits of
ACTs for various orthopedic/MSK conditions, a full understanding of
the innate properties of each product has yet to be realized [11�13].

Platelets originate from megakaryocytes, which are large poly-
ploid cells in the bone marrow (BM). Platelets form through a multi-
step process that begins with the extension of megakaryocyte
pseudopodia, resulting in lengths ranging from 250 mm to 500 mm.
These elongated processes create pro-platelets—with their
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characteristic “beads on a string” appearance—which are loaded with
platelet-specific cargo [14]. Pro-platelets are released from the mega-
karyocyte and enter the fenestrated vasculature as pre-platelets,
ranging from 2 mm to 10 mm in size, which undergo fission, creating
a platelet ranging from 1mm to 3mm in size [15].

During biogenesis, megakaryocytes package platelet granules
with proteins from the BM niche and platelets continue to endocy-
tose BM plasma proteins prior to entering PB [14,15]. While in circu-
lation, platelets acquire PB plasma proteins via endocytosis [16] and
continue translating messenger RNA packaged by the megakaryocyte
[17]. Taken together, these features provide a rationale for investigat-
ing the potential differences in the secretome of BM-derived platelets
and those in circulation. Any contrast may highlight the distinct ther-
apeutic benefits of the respective platelet sources and expand the
basis for the use of platelets in MSK injuries [18,19].

In the present pilot study, the authors aimed to determine
whether there are innate differences in the secretome of BM- and PB-
derived platelets. Here leukocyte-poor PB platelets in plasma (LPP)
and leukocyte-poor BM platelets in plasma (BMP) were assayed for
an array of growth factors and immunomodulatory cytokines known
to be released by platelets over a 6-day time course. The factors
assayed include platelet-derived growth factor AA (PDGF-AA), basic
fibroblast growth factor/fibroblast growth factor 2 (bFGF/FGF-2),
granulocyte-macrophage colony-stimulating factor (GM-CSF), hepa-
tocyte growth factor (HGF), macrophage colony-stimulating factor
(M-CSF), stem cell factor (SCF), vascular endothelial growth factor
(VEGF), tumor necrosis factor alpha (TNF-a), IL-1b, interferon gamma
(IFN-g), IL-4, IL-10, IL-1 receptor antagonist protein (IRAP), IL-12p40
and arginase-1. Based on the features of platelet biogenesis and the
evolving changes in platelets while in peripheral circulation, the
authors hypothesized that there would be a difference in the secre-
tome of platelets from the two respective niches over the observed
time course.

Methods

Donor demographic information

Six patients previously scheduled for a BMC procedure provided
written consent to donate both unprocessed BM aspirate and whole
blood. Donated specimens were not used for therapeutic purposes.
Donors included four females aged 65, 65, 67 and 51 and two males
aged 51 and 60. All donors were free of any blood or systemic condi-
tion/disease.

PB and BM aspirate processing

For each donor, 8.5 mL of PB and BM aspirate was collected in
1.5 mL of 4% sodium citrate 40 mg/mL (anticoagulant) (NDC 0942-
9505-10; Fenwal, Lake Zurich, IL, USA) to create a final concentration
of 15% anticoagulant v/v. Samples were centrifuged in separate 15-
mL conical tubes (229411; CellTreat, Pepperell, MA, USA) at 1600
rpm for 8 min using a Sorvall ST16 (Thermo Fisher Scientific, Wal-
tham, MA, USA). Following centrifugation, leukocyte-poor platelet
suspensions were created by collecting the top half of the plasma
portion (~2.5 mL) from each tube, resulting in LPP and BMP. These
preparations are not PRPs by conventional criteria, as a therapeutic
PRP is identified as having �1 million platelets/mL and/or approxi-
mately 4-fold over baseline (blood) counts [20,21]. Each donor was
represented as a distinct symbol in all data sets.

Platelet and leukocyte quantification

All flow cytometry was performed using a CytoFLEX S (Beckman
Coulter, Brea, CA, USA). After collecting LPP and BMP, 10 mL of each
preparation was combined with 5 mL of anti-human CD45
conjugated to fluorescein isothiocyanate (304054; BioLegend, San
Diego, CA, USA), 5 mL of anti-CD61 conjugated to allophycocyanin
(336412; BioLegend) and 80 mL of phosphate-buffered saline (1010-
023; Thermo Fisher Scientific). The samples were incubated at room
temperature in the dark for 5 min. After staining, 10 mL was taken
out and placed into a new tube containing 90 mL phosphate-buffered
saline and run for analysis. The sample was run for 60 seconds on the
slow setting to ensure at least 10000 events were recorded. Regions
were set separately for leukocytes and platelets based on size (for-
ward scatter) and complexity (side scatter) to minimize background
noise. Gating criteria for signal were based on samples prepared the
same way with the respective isotypes, fluorescein isothiocyanate-
conjugated mouse IgG1 (400108; BioLegend) and allophycocyanin-
conjugated mouse IgG1 (400122; BioLegend).

Activation, sampling and storage of BMP and LPP preparations

A total of 600 mL of LPP and BMP was collected and placed in the
respective microcentrifuge tube (229441; CellTreat), and 66.6 mL of
100 mg/mL calcium chloride stock (793639; Sigma-Aldrich, St Louis,
MO, USA), 10 mg/mL (90.1 mM) final concentration, was added to
each sample and incubated at 378C over the 6-day time course to
induce activation. Immediately after adding the calcium chloride to
LPPs and BMPs, 150 mL of the sample was sampled (day 0). This was
repeated at day 3 and day 6. At the time of each collection, to create
cell-free plasma prior to freezing for storage, plasma was centrifuged
at 10 000 rpm for 90 seconds. The supernatant was collected, placed
in a fresh microcentrifuge tube and stored at �208C until assayed.

Protein quantification

Protein quantification was determined using BioLegend LEGENDplex
multi-analyte flow assay kit mix and match panels human macrophage/
microglia and human growth factor. The human macrophage/microglia
panel consisted of six analyte beads—TNF-a capture beads A5 (740513),
IL-4 capture beads A7 (740515), IL-10 capture beads A8 (740516), IL-1b
capture beads A10 (740517), IRAP capture beads B4 (740520) and IFN-g
capture beads B7 (740523)—for all six donors. In the latter four of the six
donors, capture beads for arginase-1 (740518) and IL-12p40 (740521)
were added to the panel. The human growth factor panel consisted of
seven analyte beads—FGF-basic capture beads A7 (740184), GM-CSF cap-
ture beads A10 (740186), HGF capture beads B2 (740187), M-CSF capture
beads B3 (740188), PDGF-AA capture beads B4 (740189), SCF capture
beads B6 (740191) and VEGF capture beads B9 (740193)—which were
used to assay all six donors. All samples were run in accordance with the
manufacturer’s instructions.

Data normalization

Platelet counts and protein concentrations were determined as
described. If a sample in a data set reported below the detectable
limit, to retain the same sample size between LPP and BMP, the value
used was the minimum detectable concentration (e.g., a value <0.24
pg/mL was assigned 0.24 pg/mL) and was a conservative representa-
tion of the low value (i.e., did not falsely further distance the sample
value from values at detectable levels). The number of mL required
from each sample to achieve 1 million platelets was determined. The
concentration of each protein in pg/mL (equivalent to fg/mL) was
multiplied by this figure, normalizing the concentration in fg per 1
million platelets at each time point. Individual normalized values
were used for statistical analysis and are represented in figures.

Statistical analysis

For each data set, values for LPP and BMP were analyzed via Prism
8.4.3 (GraphPad Software, San Diego, CA, USA) using a two-tailed
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independent t-test with a 95% confidence interval. This statistical
analysis was selected to appropriately test for differences between
the two independent platelet populations.

Results

Platelet and leukocyte quantification and cytokine normalization to
platelet count via PDGF-AA

Per mL, the mean platelet count was significantly higher in LPP
(207626 § 38 442) compared with BMP (98697 § 25 637) (P< 0.05),
and there was no significant difference in leukocyte content (9.0 §
7.257 and 221.7 § 168.8, respectively) (Figure 1A). Following normal-
ization, PDGF-AA in fg/1 million platelets did not differ between LPP
and BMP preparations, demonstrating appropriate cytokine normali-
zation based on platelet count (Figure 1B).

Quantification of growth factors

bFGF/FGF-2, GM-CSF, SCF and VEGF
Compared with LPP, there was no significant difference in the

concentration of cytokines bFGF/FGF-2, GM-CSF, SCF and VEGF com-
pared with BMP (data not shown).

M-CSF
At day 0, there was no significant difference in HGF concentration

between LPP and BMP. At day 3 and day 6, the mean M-CSF concen-
tration in fg/1 million platelets was significantly elevated in BMP
(2630.0 § 567.8 and 2901.0 § 623.1, respectively) compared with
LPP (832.2 § 263.8 and 919.0 § 322.1, respectively) (P< 0.05 each
day) (Figure 2A).

HGF
At day 0, HGF was elevated in plasma derived from BMP (4063 §

1075.0 fg/1 million platelets) compared with LPP (305.3§ 64.7 fg/1 mil-
lion platelets) (P< 0.01) (Figure 2B). Concentrations of HGF increased in
BMP plasma at day 3 (6509 § 1130.0 fg/1 million platelets) and day 6
(6180 § 1063.0) relative to day 0, differing significantly from LPP at
both time points (274.7 § 69.5 and 295.6 § 67.7 fg/1 million platelets,
respectively) (P< 0.001 at day 3 and day 6) (Figure 2B).

Quantification of immunomodulatory factors

TNF-a, IL-1b, IFN-g and IL-12p40
Compared with LPP, there was no significant difference in the

concentration of cytokines TNF-a, IL-1b, IFN-g and IL-12p40 com-
pared with BMP (data not shown).
Fig. 1. (A) Platelet and leukocyte count per mL for preparations of LPP and BMP from six do
platelets. Graphs show mean and standard error of the mean. *P < 0.05. 1M, 1 million.
IL-4
At day 0 and day 3, there was no significant difference between

the LPP control and BMP. At day 6, levels of IL-4 in BMP (25.14 § 5.34
fg/1 million platelets) were significantly elevated compared with LPP
(8.612 § 2.102) (P< 0.05) (Figure 3A).

IL-10
IL-10 was significantly increased in fg/1 million platelets in BMP

compared with LPP at day 0 (8.53 § 0.71 and 3.71 § 0.72, respec-
tively) (P< 0.001), day 3 (8.65 § 1.56 and 2.65 § 0.46, respectively)
(P< 0.01) and day 6 (7.41 § 0.73 and 2.48 § 0.27, respectively) (P<
0.001) Figure 3B).

IRAP
At day 0, IRAP was significantly elevated in BMP compared with

LPP (5472.0 § 1073 fg/1 million platelets compared with 808.3 §
107.4 fg/1 million platelets) (P< 0.01) (Figure 3C). At day 3, the aver-
age IRAP concentrations per 1 million platelets in both BMP and LPP
were substantially reduced relative to day 0 and did not differ statis-
tically from one another. At day 6, IRAP concentration dropped fur-
ther in LPP plasma to 18.21 § 6.51 fg/1 million platelets and was
significantly lower compared with BMP IRAP levels (1381.0 § 496.9
fg/1 million platelets) (P< 0.05) (Figure 3C).

Arginase-1
Despite appreciable differences in mean levels at day 0, there was

no significant difference between BMP (7783.0 § 4888.0 pg/1 million
platelets) and LPP (20.83 § 4.174 pg/1 million platelets) plasma levels
of arginase-1. At day 3, levels of arginase-1 increased substantially in
BMP plasma samples (12059 § 4180 pg/1 million platelets) and were
significantly elevated compared with LPP plasma levels (52.91 §
13.38 pg/1 million platelets) (P< 0.05) (Figure 3D). At day 6, argi-
nase-1 concentrations in BMP plasma remained significantly elevated
compared with concentrations in LPP plasma (12 932.0 § 4716 and
102.1 § 54.15 pg/1 million platelets, respectively) (P< 0.05)
(Figure 3D). Overall, the average levels of arginase-1 were substan-
tially higher in BMP compared with LPP but with considerable vari-
ability across BMP donor samples. It is important to note that the
levels of arginase-1 are reported on a scale of pg per 1 million plate-
lets, a concentration 1000-fold higher than all cytokines/proteins
assayed (fg).

Discussion

PRP and BMC are commonly used in orthobiologics for their anti-
inflammatory, anabolic/regenerative and immunomodulatory char-
acteristics via platelet degranulation and cell secretions. Although
nors, each represented by a symbol. (B) Normalization of PDGF-AA levels per 1 million



Fig. 2. Relative levels of the growth factors (A) M-CSF and (B) HGF from six donors over the 6-day time course. Symbols represent each donor. Graphs showmean and standard error
of the mean. *P< 0.05, **P < 0.01, ***P < 0.001. 1M, 1 million.

Fig. 3. Relative levels of the immunomodulatory factors (A) IL-4, (B) IL-10 and (C) IRAP from six donors and (D) arginase -1 from four donors over the 6-day time course. Each donor
is represented by a symbol. The respective symbols used for arginase-1 detection pair with the donor symbols used throughout. Graphs show mean and standard error of the mean.
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 1M, 1 million.
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considerable attention has recently been given to differences in PB
PRP preparations, including hematocrit, platelet concentration over
baseline and leukocyte content, little discussion has surrounded pla-
telets derived from BM. In the present study, concentrations of 15
growth factors and immunomodulators were determined in (leuko-
cyte-poor) LPP and BMP preparations over a 6-day time course, and
factors were normalized to the respective platelets counts. Cytokine
levels at day 0 represent innate levels in each niche. Cytokines inher-
ently have a short half-life, ranging from minutes to hours [22�25],
and dynamic changes over the time course are a balance between
degradation and platelet-dependent release. Therefore, continued
detection of the factors over 6 days and relative changes in cytokine
levels in BMP compared with LPP provide insight into the differential
secretome of platelets from the respective niches. Although the cell
source of the cytokines assayed is variable and not exclusive to plate-
lets, PDGF-AA, bFGF/FGF-2, GM-CSF, HGF, M-CSF, VEGF, TNF-a, IL-1b,
IFN-g , IL-12, IL-4, IL-10, IRAP/IL-1Ra and arginase-1 have all been
reported to be released by platelets [25�31]. PDGF-AA, which is pref-
erentially secreted by platelets, was used to normalize cytokines to
platelet count.

The authors’ initial platelet counts revealed an elevated number of
platelets in LPP compared with BMP, which may be due to larger pro-
and pre-platelets existing in the BM that reside in the (uncollected)
buffy coat following centrifugation. As a validation for the authors’
normalization approach, the platelet-secreted growth factor PDGF-
AA was used over the time course, which in principle would show lit-
tle variability between the samples per 1 million platelets. Indeed,
through all time points there was no significant difference between
the LPP and BMP groups with respect to PDGF-AA. Of the factors
assayed, BMP did not result in a significant difference in bFGF/FGF-2,
GM-CSF, SCF, VEGF, IL-1b, IFN-g or IL-12p40 levels compared with
the LPP control at any time point. By contrast, significant differences
were seen in IRAP, M-CSF, HGF, IL-4, IL-10 and arginase-1. Cytokines
detected in this study were classified as growth factors and immuno-
modulatory factors based on their conventional function; however,
several of these growth factors have immunomodulatory functions as
well [32�36].

The therapeutic benefit of IRAP as an immunomodulator is via
antagonizing the IL-1 receptor, inhibiting intracellular signal trans-
duction by IL-1b. The authors’ results at day 0 mirrored the observa-
tions of Cassano et al. [37], in that BMP contained significantly higher
levels of IRAP compared with LPP, demonstrating that IRAP levels in
BM plasma are innately elevated. In the current study, the authors
observed depleted IRAP levels at day 3 and day 6 in BMP relative to
day 0, which was likely due to the short half-life of IRAP (on the order
of hours) [38]. Importantly, IRAP concentrations per 1 million plate-
lets in BMP differed from LPP at day 6, indicating a sustained release
of IRAP in BM-derived platelets compared with PB-derived platelets.
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There were significant differences in the relative levels of IL-4, IL-
10, M-CSF and HGF, which were elevated in BMP compared with LPP
over the 6-day time course. Importantly, each of these factors has key
implications in the polarization of monocytes. Recently, monocytes/
early macrophages have been found to be key regulators in the pro-
motion of osteoarthritis [39], which involves polarization in vivo [40].
M1 polarization is catabolic and pro-inflammatory, whereas M2
polarization is anabolic, stimulating tissue regeneration and reducing
inflammation [40�43]. In vitro, stimulation of monocytes with IL-4
and M-CSF has been shown to promote expression of CD206 [44]
and, in conjunction with IL-10, M2 polarization [45,46]. With regard
to HGF, this growth factor showed high levels relative to LPP at day 0
in BMP samples, with notable increases at the latter time points. This
may provide therapeutic benefits that complement IL-4, IL-10 and
M-CSF, as HGF is known to inhibit M1-polarized macrophage produc-
tion of pro-inflammatory factors [47]. In addition, HGF has been
noted to be a key factor in the anti-inflammatory effects of PRP [48].
Moreover, HGF is anti-fibrotic [49], which has significant implications
in the treatment of diseased joints, and remarkably elevated in BMP
relative to LPP.

Based on the role of immunomodulators and growth factors in
monocyte polarization, both of which were elevated in the early
phases of this study in BMPs, the M1-associated cytokine IL-12p40
and the M2-related enzyme arginase-1 were added to the authors’
array beginning with the third donor. No significant differences were
detected in IL-12p40 levels. In sharp contrast, arginase-1 levels in
BMP showed the most remarkable differential compared with LPP.
This enzyme is unique and known to be expressed by monocytes
with an M2 phenotype and has a role in limiting nitric oxide produc-
tion and promoting anti-inflammatory and anabolic processes [50].
Arginase-1 metabolizes L-arginine, which reduces the bioavailability
of the amino acid extracellularly (and intracellularly when synthe-
sized via monocytes), impairing nitric oxide production by mono-
cytes/macrophages (M1 phenotype) [51]. In addition, the byproduct
of L-arginine metabolism by arginase includes ornithine, which can
be transported across the cell membrane from the extracellular envi-
ronment [52] and serves as a precursor for the production of poly-
amines and proline, which are involved in cell proliferation,
immunomodulation and collagen synthesis [51,53]. Taken together,
the release of arginase-1 may be a valuable anti-inflammatory attri-
bute of BM platelets.

In regenerative medicine, the use of orthobiologics is aimed at
resolving imbalances in cellular activity, resulting in reduced pain
and improved function. In this study, the trend observed across the
cytokines evaluated characterized BMP as having a secretome related
to monocyte function and an M2-promoting signature compared
with LPP. The polarization and secretory activity of monocytes either
promote or mitigate pain associated with an array of orthopedic con-
ditions that are commonly treated with orthobiologics. Monocyte
polarization toward an M1/pro-inflammatory phenotype or a defi-
ciency in M2 phenotypes has been associated with low back pain
[54], progression of intervertebral degenerative disc disease [55],
neuropathic pain associated with spinal cord compression [56], ten-
dinitis [57] and osteoarthritis progression [40] and severity [40,58].
Importantly, monocytes may have the unique ability to shift their
polarization phenotype (i.e., from M1 to M2) [59]. The role of mono-
cytes in pain and the progression of numerous orthopedic conditions
suggests that targeting their polarization is a viable therapeutic
approach. Based on the authors’ results, BM-derived platelets may
offer a unique benefit in mitigating M1 polarization.

Conclusions

The authors’ results demonstrate that BM-derived platelets have a
unique secretome compared with those in peripheral circulation and
may be useful as a stand-alone therapy, when concentrated in BMC
or as an adjuvant to micronized adipose tissue when treating chronic
orthopedic conditions, especially those in which monocytes contrib-
ute to chronic inflammation.
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